Exercise 10

A sample of tritium-3 decayed to 94.5% of its original amount after a year.
(a) What is the half-life of tritium-3?
(b) How long would it take the sample to decay to 20% of its original amount?

Solution

Part (a)

Assume that the rate of mass decay is proportional to the amount of mass remaining at any given time.

$$
\frac{d m}{d t} \propto-m
$$

There's a minus sign here because mass is being lost as time increases. Change the proportionality to an equation by introducing a (positive) constant k.

$$
\frac{d m}{d t}=-k m
$$

Divide both sides by m.

$$
\frac{1}{m} \frac{d m}{d t}=-k
$$

Rewrite the left side by using the chain rule.

$$
\frac{d}{d t} \ln m=-k
$$

The function you have to differentiate to get $-k$ is $-k t+C$, where C is any constant.

$$
\ln m=-k t+C
$$

Exponentiate both sides.

$$
\begin{aligned}
& e^{\ln m}=e^{-k t+C} \\
& m(t)=e^{C} e^{-k t}
\end{aligned}
$$

Use a new constant m_{0} for e^{C}.

$$
\begin{equation*}
m(t)=m_{0} e^{-k t} \tag{1}
\end{equation*}
$$

Use the fact that the sample of tritium-3 decayed to 94.5% of its original amount after a year.

$$
\begin{aligned}
0.945 m_{0} & =m_{0} e^{-k(1)} \\
0.945 & =e^{-k} \\
\ln 0.945 & =\ln e^{-k}
\end{aligned}
$$

Solve for k.

$$
\begin{gathered}
\ln 0.945=-k \ln e \\
k=-\ln 0.945 \approx 0.0565704 \text { year }^{-1}
\end{gathered}
$$

Equation (1) then becomes

$$
\begin{aligned}
m(t) & =m_{0} e^{-(-\ln 0.945) t} \\
& =m_{0} e^{\ln 0.945^{t}} \\
& =m_{0}(0.945)^{t}
\end{aligned}
$$

The half-life is defined as the amount of time it takes for a sample to decay to half its mass, so set $m(t)=m_{0} / 2$ and solve the equation for t.

$$
\begin{gathered}
m(t)=\frac{m_{0}}{2} \\
m_{0}(0.945)^{t}=\frac{m_{0}}{2} \\
(0.945)^{t}=\frac{1}{2} \\
\ln (0.945)^{t}=\ln \frac{1}{2} \\
t \ln 0.945=\ln 0.5 \\
t=\frac{\ln 0.5}{\ln 0.945} \approx 12.2528 \text { years }
\end{gathered}
$$

Part (b)

To find how long it takes the sample to decay to 20% of its original mass, set $m(t)=0.2 m_{0}$ and solve the equation for t.

$$
\begin{gathered}
m(t)=0.2 m_{0} \\
m_{0}(0.945)^{t}=0.2 m_{0} \\
(0.945)^{t}=0.2 \\
\ln (0.945)^{t}=\ln 0.2 \\
t \ln 0.945=\ln 0.2 \\
t=\frac{\ln 0.2}{\ln 0.945} \approx 28.4502 \text { years }
\end{gathered}
$$

